Determinants of E-learning Evasion Scale (DEES): Proposal and Validation

Authors

DOI:

https://doi.org/10.18264/eadf.v10i2.1035

Abstract

There is a trend for e-learning courses. However, with this trend, there are also high evasion indices in those courses, which is a challenge for institutions' managing and efficiency. Therefore, it is of high importance to understand why students evade from e-learning courses. Taking this into account, this study had the objective of propose and validate the Determinants of E-learning Evasion Scale (DEES). We assessed 520 students that have evaded from undergraduate and graduate e-learning courses from the Federal University of Santa Maria. We assessed the dimensionality of the scale using confirmatory and exploratory factor analysis. The original version of the DEES scale comprised 52 items. In addition, item quality was analyzed using a multidimensional item response theory model. The models indicated, in general, good items in the DEES scale. Results suggests that the DEES is mainly composed by two dimensions, one relating to support to learning, and the other to personal conditions during study. The first dimension comprised items that highlight the support of the presential teacher in face of the student's ideas, the feedback and guidance provided by the online teacher, and the perceived knowledge of the online teacher about the course content. In the second dimension, the most important items comprised the time available for studying, the number of work-related commitments/tasks, and the changes in the work routine during the e-course.

Keywords: Evasion. E-learning. Scale. Psychometric assessment.

Downloads

Download data is not yet available.

Author Biography

Pedro Saulo Rocha Martins, Universidade Federal de Minas Gerais

Programa de pós-graduação Psicologia: Cognição e Comportamento, Universidade Federal de Minas Gerais

References

ANUNCIAÇíO, L. An Overview of the History and Methodological Aspects of Psychometrics. Journal for ReAttach Therapy and Developmental Diversities, s. l.v. 1, n. 1, p. 44-58, 2018. DOI: https://doi.org/10.26407/2018jrtdd.1.6.

ASPAROUHOV, T.; MUTHEN, B. Simple second order chi-square correction. [S. l.: s. n], 2010. Manuscrito não publicado. Disponí­vel em: https://www.statmodel.com/download/WLSMV_new_chi21.pdf.

BAKER, F. The basics of item response theory. College Park: ERIC Clearinghouse on Assessment and Evaluation; University of Maryland, 2001.

CAI, L. Metropolis-Hastings Robbins-Monro Algorithm for Confirmatory Item Factor Analysis. Journal of Educational and Behavioral Statistics, s. l., v. 35, n. 3, p. 307–335, 2010. DOI: https://doi.org/10.3102/1076998609353115.

CHALMERS, R. P. Mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, s. l., v. 48, n. 6, p. 1–29, 2012. DOI: https://doi.org/10.18637/jss.v048.i06.

FAVERO, R. V. M. Dialogar ou evadir: Eis a questão! um estudo sobre a permanência e a evasão na educação a distância. 2006. Dissertação (Mestrado em Educação) Universidade Federal do Rio Grande do Sul, Porto Alegre, 2006.

FERRANDO, P. J.; LORENZO-SEVA, U. Program FACTOR at 10: origins, development and future directions. Psicothema, s. l., v. 29, n. 2, p. 236-241, 2017. DOI: 10.7334/psicothema2016.304.

FERRANDO, P. J.; LORENZO-SEVA U. Assessing the quality and appropriateness of factor solutions and factor score estimates in exploratory item factor analysis. Educational and Psychological Measurement, s. l., v. 78, n. 5, p. 762-780, 2018. DOI: https://doi.org/10.1177%2F0013164417719308.

HAIR, J. F.; BLACK, W. C.; BABIN, B. J.; ANDERSON, R. E. Multivariate Data Analysis (new int. ed.). Harlow: Pearson Education, 2014.

LORENZO-SEVA, U.; FERRANDO, P. J. Robust Promin: a method for diagonally weighted factor rotation. Liberabit: Revista Peruana De Psicologí­a, s. l., v. 25, n. 1, p. 99-106, jan./jun. 2019. DOI: https://doi.org/10.24265/liberabit.2019.v25n1.08.

LOTT, A. C. O; FREITAS, A. S. F.; FERREIRA, J. B; LOTT, Y. M. Persistência e Evasão na Educação a Distância: Examinando Fatores Explicativos. Revista Eletrônica de Ciência Administrativa, s. l., v. 17, n. 2, p. 149-171, 2018.

MAURíCIO, W. P. D. De uma educação a distância para uma educação sem distância: a problemática da evasão nos cursos de Pedagogia a distância. 2015. Tese (Doutorado em Educação) – Programa de Pós-Graduação em Educação, Universidade do Vale do Rio do Sinos, São Leopoldo, 2015.

MCDONALD, R. P. Test theory: A unified treatment. Mahwah, NJ: Lawrence Erlbaum, 1999.

RAMOS, W. M; BICALHO, R. N. M.; SOUSA, J. V. Evasão e persistência em cursos superiores í distância: o estado da arte da literatura internacional. In: CONGRESSO BRASIELRIO DE ENSINO SUPERIOR A DIST NCIA, 9., 2014, Florianópolis. Anais [...]. Cuiabá: Associação Universidade em Rede; Florianópolis: Universidade Federal de Santa Catarina, 2014. p. 1-16.

ROSSEEL, Y. Lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, s. l., v. 48, n. 2, p. 1–36, 2012. DOI: https://doi.org/10.18637/jss.v048.i02.

ROVAI, A. P. In search of higher persistence rates in distance education online programs. Internet and Higher Education, Virginia Beach, v. 6, n. 1, p. 1-16, 2003.

SALES, P. A. O. Evasão em Cursos a Distância: motivos relacionados í s caracterí­sticas do curso, do aluno e do contexto de estudo. 2009. 176f. 2009. Dissertação -Universidade de Brasí­lia, Brasí­lia.

SAMEJIMA, F. Estimation of latent ability using a response pattern of graded scores. Psychometrika, s. l., v. 34, n. 1, p. 1–97, 1969. DOI: https://doi.org/10.1007/BF03372160.

SANTOS, E. M.; OLIVEIRA NETO, J. D. Evasão na educação a distância: identificando causas e propondo estratégias de prevenção. Paidéi@: Revista Cientí­fica de Educação a Distância, s. l., v. 2, n. 2, p. 1-28, 2009.

SILVA, D. R.; MARTINS, S. L.; MACIEL, C. Identification and systematization of indicatives and data mining techniques for detecting evasion in distance education. In: LATIN AMERICAN CONFERENCE ON LEARNING TECHNOLOGIES (LACLO), 20., 2017, La Plata. Anais ["¦]. [S. l]: IEEE, 2017. p. 1-8.

TEAM, R. C. R: A Language and Environment for Statistical Computing. versão 3.6.0. Vienna, Austria: R Foundation for Statistical Computing, 2019. Disponí­vel em: https://www.r-project.org/.

TIMMERMAN, M. E.; LORENZO-SEVA, U. Dimensionality Assessment of Ordered Polytomous Items with Parallel Analysis. Psychological Methods, s. l., v. 16, n. 2, p. 209-220, 2011. DOI 10.1037/a0023353.

Published

2020-09-14

How to Cite

Vieira, K. M., Martins, P. S. R., Bender Filho, R., & Moreira Júnior, F. de J. (2020). Determinants of E-learning Evasion Scale (DEES): Proposal and Validation. EaD Em Foco, 10(2). https://doi.org/10.18264/eadf.v10i2.1035

Issue

Section

Original Articles

Most read articles by the same author(s)