Analysis of Metacognitive Profiles to Reduce Dropout in Distance Learning: a Data Science-Based Approach
DOI:
https://doi.org/10.18264/eadf.v15i1.2377Keywords:
Neuroeducation, Metacognition, Data science, Digital education, Cognitive profilesAbstract
This study investigates the integration of neuroeducation, metacognitive analysis, and data science to enhance the digital education (DE) experience. We collected and analyzed data from 1,391 postgraduate students at Estratego College, utilizing a comprehensive questionnaire and the Metacognitive Awareness Inventory (MAI) to assess academic, personal, socioeconomic, and metacognitive dimensions. Data preprocessing and analysis were conducted using Python in Jupyter Notebook, employing K-Means clustering and Support Vector Machine (SVM) classification to identify and categorize metacognitive profiles. Our findings reveal four distinct metacognitive profiles among students, which correlate significantly with their academic performance and engagement in DE. The clustering process, validated through the Elbow Method and Silhouette Analysis, confirmed the optimal formation of these profiles, enhancing our understanding of the diverse learning strategies within the student population. Principal Component Analysis (PCA) was utilized to further refine the data, focusing on the most significant metacognitive attributes that influence learning outcomes. This analysis highlighted specific metacognitive strategies that are pivotal in fostering effective learning environments and reducing dropout rates. The study underscores the potential of combining neuroeducation principles, metacognitive insights, and data science techniques to tailor educational strategies that accommodate diverse learner profiles. By aligning educational content and methodologies with students' cognitive and metacognitive capacities, educators can significantly enhance engagement and efficacy in DE settings, ultimately improving academic success and retention rates. This research contributes to the field by demonstrating how data-driven insights can inform and transform educational practices, offering a model for leveraging technology and cognitive science to meet the evolving demands of digital education.
Keywords: Neuroeducation. Metacognition. Data science. Digital education. Cognitive profiles.
Downloads
References
ABBAD, G. et al. Evasão em curso via internet: explorando variáveis explicativas. RAE eletrônica, v. 5, n. 2, 2006.
AHMED, M. et al. The k-means Algorithm: A Comprehensive Survey and Performance Evaluation. Electronics, v. 9, n. 8, p. 1295, 2020.
ALLIPRANDINI, P. S, A. et al. Estratégias de aprendizagem utilizadas por estudantes na educação a distância: implicações educacionais. Psicologia da Educação, São Paulo , n. 38, p. 05-16, 2014.
ASSOCIAÇÃO BRASILEIRA DE EDUCAÇÃO A DISTÂNCIA. Censo EAD.BR: relatório analítico da aprendizagem a distância no Brasil 2020. Curitiba, PR: InterSaberes, 2022.
BAHAR, A. S.; SHAPIRO, M. L. Remembering to Learn: Independent Place and Journey Coding Mechanisms Contribute to Memory Transfer. Journal of Neuroscience, v. 32, n. 6, p. 2191–2203, 2012.
COSENZA, R. M; GUERRA, L. Neurociência e educação: como o cérebro aprende. Porto Alegre: Artmed, 2011.
COSTA, R D. Classificação dos estilos de aprendizagem baseado em sistemas inteligentes: um estudo de caso na educação mediada por tecnologia. 81f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2020.
FERNANDEZ, A. et al. SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary. Journal of Artificial Intelligence Research, v. 61, p. 863–905, 2018.
FILATRO, A.; CAIRO, S. Produção de Conteúdos Educacionais. São Paulo: Ed. Saraiva Uni, 2015.
FILATRO, A. Data Science na Educação: Presencial, a Distância e Corporativa. São Paulo, SP: Saraiva Educação, 2021.
FILATRO, A. Design instrucional contextualizado: educação e tecnologia. São Paulo: Ed. SENAC, 2004.
FILATRO, A. Design Instrucional na prática. 1ª Ed. Pearson, 2008.
FLAVELL, J. H. Metacognition and cognitive monitoring. A new area of cognitive-developmental inquiry. American Psychologist, v. 34, n. 10, p. 906-911, 1979.
FRAZIER, P. I. A Tutorial on Bayesian Optimization. arXiv (Cornell University), 2018.
GHADDAR, B.; NAOUM-SAWAYA, J. High dimensional data classification and feature selection using support vector machines. European Journal of Operational Research, v. 265, n. 3, p. 993–1004, 2018.
GUTIERREZ-PACHAS, D. A. et al. Supporting Decision-Making Process on Higher Education Dropout by Analyzing Academic, Socioeconomic, and Equity Factors through Machine Learning and Survival Analysis Methods in the Latin American Context. Education Sciences, v. 13, n. 2, 154, 2023. Disponível em: https://www.mdpi.com/2227-7102/13/2/154 Acesso em: 23 mar. 2025.
JESUS, Â. M. et al. Aplicando ciência de dados educacionais para avaliar a influência da programação no progresso das notas do Ensino Médio. Revista Educação Pública, v. 21, n. 33, 2021.
KANDEL E. R. et al. M. Princípios de Neurociências. 5a Ed. Porto Alegre: Artmed, 2014.
KARAOGLAN YILMAZ, F. G.; YILMAZ, R. Learning analytics as a metacognitive tool to influence learner transactional distance and motivation in online learning environments. Innovations in Education and Teaching International, v. 58, n. 5, p. 575–585, 2020.
KOLB, D. A. Learning Style Inventory: Self Scoring Test and Interpretation Booklet. Boston, MA: McBer, 1985.
LIMA FILHO, R. N.; BRUNI, A. L. Metacognitive Awareness Inventory: tradução e validação a partir de uma análise fatorial confirmatória. Psicologia: Ciência e Profissão, 35(4), 1275-1293, 2015.
LINDERMAN, G. C.; STEINERBERGER, S. Clustering with t-SNE, provably. SIAM journal on mathematics of data science, v. 1, n. 2, p. 313–332, 2019.
MORY, E. H. Feedback Research Review. In: JONASSEM, D. (Comp.). Handbook of Research on Educational Communications and Technology. Mahwah: Lawrence Erlbaum. p. 745-783, 2004.
ORSUCCI, F. F; SALA, N. Neuroscience and Technology Transform the Educational Ecosystem. New York: Nova Medical and Health, 2022.
PELIKAN, E. R. et al. Distance learning in higher education during COVID-19: The role of basic psychological needs and intrinsic motivation for persistence and procrastination–a multi-country study. PLOS ONE, v. 16, n. 10, p. e0257346, 2021.
PINTO, L. F. G. Teorias De Aprendizagem Aplicadas ao E-learning: Uma Abordagem da Teoria Cognitiva De Aprendizagem Multimídia. Anais do Congresso Internacional de Educação e Tecnologias, 2020.
RABELO, D. S. S. et al. Utilização de técnicas de mineração de dados educacionais para predição de desempenho de alunos EaD em ambientes virtuais de aprendizagem. Anais do Simpósio Brasileiro de Informática na Educação (SBIE), Recife-PE, 2017.
RAJU, V. N. G. et al. Study the Influence of Normalization/Transformation process on the Accuracy of Supervised Classification. Disponível em: https://ieeexplore.ieee.org/document/9214160 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), 729-735. IEEE, 2020.
RAMOS, A. S. F. Dados recentes da neurociência fundamentam o método "Brain-based learning". Rev. psicopedag., São Paulo , v. 31, n. 96, p. 263-274, 2014.
RIVAS, S. F. et al. Metacognitive strategies and development of critical thinking in higher education. Frontiers in Psychology, v. 13, n. 1, 2022.
ROMERO, C.; VENTURA, S. Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, v. 3, n. 1, p. 12-27, 2013.
SANTOS, L. R. dos et al . O Ensino Remoto Emergencial na Perspectiva da Metacognição: Análise da Percepção de Alunos de um Curso Técnico em Enfermagem. EaD em Foco, [S. l.], v. 11, n. 2, 2021. Disponível em: https://eademfoco.cecierj.edu.br/index.php/Revista/article/view/1260 Acesso em: 17 mai. 2024.
SANTOS, L. R. DOS; PEIXOTO, M. A. P. Análise do inventário de consciência metacognitiva de alunos do curso técnico em enfermagem. Research, Society and Development, v. 10, n. 12, p. e62101220019, 2021.
SAPUTRA, D. M. et al. Effect of Distance Metrics in Determining K-Value in K-Means Clustering Using Elbow and Silhouette Method. Proceedings of the Sriwijaya International Conference on Information Technology and Its Applications (SICONIAN 2019), 2020.
SCHRAW, G.; DENNISON, R. S. Assessing metacognitive awareness. Contemporary Educational Psychology, 19, (4), 460–475, 1994.
SILVA JÚNIOR, S. L. et al. The interface of neuroscience, education and technology: enhancing learning in the twenty-first century. Revista Aracê, São José dos Pinhais, v. 6, n. 2, p. 1419–1430, 2024. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/732 Acesso em: 23 mar. 2025.
TOMMI RAIJ et al. Parallel input makes the brain run faster. NeuroImage, v. 40, n. 4, p. 1792–1797, 2008.
WOLD, S. et al. Principal component analysis. Chemometrics and Intelligent Laboratory Systems, v. 2, n. 1-3, p. 37–52, 1987.
ZAWACKI-RICHTER, O. et al. Systematic Review of Research on Artificial Intelligence Applications in Higher Education – Where are the Educators? International Journal of Educational Technology in Higher Education, v. 16, n. 39, p. 1–27, 2019. Disponível em: https://educationaltechnologyjournal.springeropen.com/articles/10.1186/s41239-019-0171-0 Acesso em: 23 mar. 2025.
ZHANG, X. et al. A Review of Data Mining in Personalized Education: Current Trends and Future Prospects. arXiv preprint arXiv:2402.17236, 2024. Disponível em: https://arxiv.org/abs/2402.17236 Acesso em: 23 mar. 2025.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 EaD em Foco

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Revista EaD em Foco receive the license
Creative Commons - Atribuição 4.0 Internacional (CC BY 4.0).
All subsequent publications, complete or partial, must be made with the acknowledgment, in citations, of the Revista EaD em Foco as the original editor of the article.